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Abstract—Home Internet of Things (IoT) devices can be
difficult for users to secure. Prior work has suggested
measuring these devices’ network behaviors and using these
characterizations to create allowlists of permitted endpoints.
Unfortunately, previous studies have typically been con-
ducted in controlled lab settings, with one or two devices
per product. In this paper, we examine whether popular
home IoT products’ network behaviors generalize via both
in-lab experiments of 24 devices and a large, crowdsourced
dataset of IoT devices in the wild. We find that observing
traffic from one device in one lab is often insufficient to
fully characterize an IoT product’s network behaviors. For
example, specifying which endpoints a device may contact
based on initial measurements in our lab led 25% of products
to stop functioning later, and even more when using a VPN.
We then used the crowdsourced dataset to better understand
this traffic’s heterogeneity and pinpoint how to create more
generalizable allowlists. We identified causes of failure, such
as regionalization, CDN usage, third-party integrations, and
API changes. Finally, we used the crowdsourced data in
numerous configurations to specify which endpoints each
product in our lab could contact. We found that domain-level
allowlists enabled the majority of devices to function in our
lab using data collected years in the past. For the remaining
devices, we characterize how to mitigate the failures observed
and pave the way to creating more generalizable allowlists.

1. Introduction

Many homes now contain Internet of Things (IoT)
devices, such as smart light bulbs, cameras, and ther-
mostats [30]. Unfortunately, home IoT devices have suf-
fered from numerous security issues [1]. Attackers have
exploited vulnerabilities in devices’ software, protocols,
and default settings [6], creating botnets like Mirai [3] and
Hajime [16]. The range of vendors creating IoT devices,
the difficulty of deploying patches to devices without
screens or traditional user interfaces, and a lack of stan-
dardization contribute to these security challenges [34].

Rather than relying only on potentially unresponsive
vendors to patch devices, households could control the
network traffic of their own IoT devices. The Manufac-
turer Usage Description (MUD), standardized in an IETF
RFC, has been proposed to help combat security threats
to home IoT devices [19]. The idea is to specify devices’
expected behaviors, particularly expected network traffic
destinations (endpoints), in a MUD file. A homeowner
could thus use a MUD file to create network policies

for their home IoT devices. Any behavior that deviates
from those specified would be blocked by default. In this
way, MUD files function as an allowlist, enumerating
the only external endpoints that the home IoT device
can contact. In other words, MUD-like allowlists restrict
outgoing traffic to a predefined set of endpoints.

Because allowlists have a small attack surface, they are
very attractive from a security perspective. For instance,
whereas botnets like Mirai [3] were used to perform a
distributed denial of service (DDoS) attack using com-
promised home IoT devices, a MUD-like allowlist would
greatly mitigate such DDoS attacks. First of all, only
endpoints that are listed on any common device’s allowlist
would be a potential DDoS victim. Furthermore, the al-
lowlists for different devices would likely have minimal
overlap, minimizing the total amount of traffic that could
be directed at any single target even if it did appear on
some allowlist. A MUD-like allowlist could also make it
harder for an attacker to exfiltrate private data from the
home, requiring that they establish a sink on an endpoint
listed in a home’s allowlists. If implemented correctly
(i.e., all listed endpoints are legitimate), such allowlists
can make stronger security guarantees than alternative
approaches like blocklists or anomaly detection.

While allowlists thus have powerful security proper-
ties, they have rarely been used in practice and manufac-
turers to date mostly have not created them. In response,
in this paper we essentially investigate the possibility
of crowdsourcing them. For general-purpose computing
devices, enumerating the destinations that general should
be able to contact is typically intractable. However, be-
cause many home IoT devices perform a very limited
set of actions and thus would presumably contact only
a few endpoints, intuition suggests that allowlists may be
practical for securing home IoT devices at the network
level, leading to the MUD standard.

The critical challenge is that MUD files must fully
specify a product’s expected behaviors. An incomplete
MUD file, or incomplete training data for an anomaly
detection model, could cause devices to cease functioning
correctly, destroying the user experience. Compared to
blocklists or anomaly detection, completeness is essential
for allowlist functionality; otherwise users might quickly
abandon allowlists, harming security. Because manufac-
turers have been slow to release MUD files for their own
devices, leaving open the question of how MUD files
should be populated. Specifically, would simple observa-
tion of these devices (e.g., in a lab) suffice?

Measurement studies are a potential solution for
identifying home IoT devices’ expected network behav-



iors [25], [27]. By observing and recording different home
IoT products’ traffic in the lab, one may be able to
learn the endpoints the device contacts and use those to
create the MUD file, as proposed in prior work [14], [15].
The disadvantage of this approach is that it assumes an
observation made from one or two devices in the lab
(the approach taken in prior work) generalizes to the
behavior of the same product in deployment, regardless of
various factors, ranging from the network environment to
geography. As we show in this paper, measurements made
in the lab may fail to capture the variability of home IoT
products’ network behaviors across environments.

Toward this goal, we measure the variability of 24
home IoT devices’ network traffic using both a large-
scale, crowdsourced dataset and an in-lab testbed,
providing a more general picture of home IoT devices’
network behaviors than prior work. Studying a single
device in a controlled environment, as in past work, misses
key sources of variability across devices, regions, network
architectures, and time. Without accounting for such vari-
ability, observations of traffic destinations may not transfer
across instances of an IoT product, requiring each IoT
device owner to take the onerous step of exercising all of a
device’s functionalities to make informed decisions about
what security policies to deploy. Further, if the owner
observes unseen behaviors from their devices, there is no
way to tell if this is a normal variation or actual threat.

As our first contribution, we performed an in-lab
study of 24 popular home IoT products. We show how
variability in a product’s network behaviors can break
device functionality if measurements of a single device
bootstrap a MUD. Specifically, we exercised these 24
products’ key functions, recording their network traffic in
our lab. Using these measurements, we enforced a MUD
that only allows the device to contact endpoints observed
in the initial measurements. We matched previously ob-
served traffic to future endpoints at three levels of ab-
straction, ranging from second-level domain to hostname
(i.e., fully qualified domain name). We then attempted to
exercise the same functionalities. We ran variants of these
experiments with the device using the same network in our
US-based lab, as well as over a VPN network connected to
servers in Germany with proper registration information.
The experiments varying the effective geography were
inspired by prior work [25] comparing network measure-
ments in a US lab and a UK lab. However, that work
did not attempt to restrict future traffic based on these
measurements and thus did not measure the resultant
MUD file’s impact on device functionality.

In the experiments using network traffic measured
in the US to enforce a simulated MUD for that
same device connected over a VPN to a German net-
work, 11 of the 24 devices stopped working. Some
of these issues were caused by the use of regional
identifiers (e.g., avs-alexa-6-na.amazon.com vs.
avs-alexa-7-eu.amazon.com). Even when both
the initial measurement and subsequent experiment were
conducted in our lab, 6 of the 24 devices stopped working
due to variations in the specific endpoints contacted.

As our second contribution, we measured sources
of variability in the network behaviors of distinct
devices of the same make and model (“product”)
more broadly using a large, crowdsourced dataset.

Specifically, we searched for the same 24 popular home
IoT products in the IoT Inspector [17] dataset to compare
and contrast a given product’s network behaviors across
households. We focused on the hostnames and ports with
which each device communicates. We expected to see the
variations observed in our lab study, as well as variations
based on network configurations (e.g., DNS and NTP).
We indeed observed these variations. To our surprise, we
also observed more substantial variation. Specifically, to
observe 95% of the hostnames contacted by all devices in
our dataset of a given product required a sample of over
60% of the devices of that product. Despite the variability
that we observed, many hostnames in this “long tail” were
related to each other. For example, some hostnames had
small variations (e.g., oculus2975-us1.dropcam.
com vs. oculus1802-us1.dropcam.com), presum-
ably to support load balancing. Thus, observations made
from one device are unlikely to transfer to other devices
of that same product without modification.

As our third contribution, we characterized the
degree to which a device’s network behaviors can
be transferred to other devices of the same product
based on this crowdsourced data. Transferability refers
to how much network traffic observed from one device
may apply to another. High transferability is necessary
for creating shareable MUD files. As part of this analysis,
we compared different representations of endpoints. Some
of the 24 products contacted a huge number of different
hostnames that is difficult to capture even in a large
dataset. For these products, only second-level domains are
shared among instances of the device. To make potential
MUDs more robust in the presence of a few mislabeled
or compromised devices, we also explored requiring that
a host be contacted by multiple instances of a product for
it to be considered. We found that frequently one or two
dozen instances are needed to capture this variability. In
short, this analysis of the IoT Inspector dataset enabled
us to identify parameters (representation, sample size,
threshold, regions, lifespan) needed to create allowlists
and estimate their performance.

Finally, we measured whether the same 24 products
continued to function normally in our lab when we
enforced MUD-like allowlists created from the crowd-
sourced dataset that was collected years prior. In other
words, we use the (years-old) IoT Inspector dataset to
create allowlists we actually tested in our lab to verify
their impact on device functionality. It was common for
the products in our lab to contact different hostnames
(fully qualified domain names) than those seen in the
crowdsourced data, causing many devices to stop working
when using our most restrictive representation of end-
points for our MUD-like allowlists. However, when we
represented endpoints using the second-level domain, 17
of the 24 products continued to function normally, 5 were
mostly functional, and only 2 stopped functioning entirely.
While rare actions (e.g., reinitialization) likely had not
been captured in IoT Inspector, they usually shared the
same endpoints with other functionalities collected in the
dataset. This result suggests that domain-level characteri-
zations may retain utility for years.

Among products that lost partial or full functional-
ity, apparent API changes (e.g., completely changing the
domain the device typically contacts) or new features



were most often to blame. We highlight how relatively
straightforward updates to the MUD-like allowlists would
have restored functionality to many of these products,
highlighting that domain-level allowlists are mostly feasi-
ble for home IoT devices. The key exception was media-
streaming devices, whose endpoints vary so significantly
across users that allowlists are unlikely to be feasible. At
the same time, we also highlight how many products rely
on public cloud services (e.g., AWS), minimizing some
of the security guarantees allowlists provide.

2. Problem Formulation

We aim to measure and characterize the variability
and transferability of home IoT devices’ network traffic.
More specifically, we want to understand whether the
observations we made through one set of devices (e.g.,
from a public dataset or in a lab) can be transferred to
another set of devices (e.g., the devices one owns).

2.1. Definition

A home IoT device can be viewed in terms of different
levels of abstractions. For example, a Wyze camera can be
seen as a physical device or a general product. To clarify
our discussion, we use the following terms:

• Vendor refers to a company (e.g., Amazon) that
makes the home IoT product.

• Product refers to the collection of devices sold un-
der a specific make and model name (e.g., Amazon
Ring), potentially encompassing multiple versions.

• Device refers to a single physical instance of a home
IoT product (e.g., a single Amazon Ring in a home).

• Type refers to the category of multiple products with
similar purposes (e.g., both the Amazon Ring and
Wyze Camera are a “home IoT camera”).

2.2. Variables in Measurement

Suppose a user has several home IoT devices con-
nected to their home network, over which they have total
control, including inspecting, allowing, or blocking net-
work traffic. They may want to better understand if their
home IoT devices are behaving normally or are contacting
servers they are not supposed to contact. Because vendors
normally do not release a list of endpoints a product
should contact, the user may want a public specification
(e.g., MUD files based on home IoT datasets) to learn how
other home IoT devices behave, comparing them to their
own devices. Users face several challenges transferring
knowledge from a public dataset to their own devices:

Representativeness: Prior work found that home IoT de-
vices contact hosts around the world [25], [27]. However,
it remains unclear how regional differences impact device
functionality. Mandalari et al. showed that many endpoints
home IoT devices contact do not relate to device function-
ality [21]. If regional differences in traffic affect device
functionality, an unrepresentative dataset may cause the
user to think essential traffic is illegitimate.

Host representations: Although one could assume differ-
ent device instances of the same product generally behave

similarly, it remains unclear at what level of abstraction
these similarities generalize. For example, some prod-
ucts may contact a small number of endpoints, which
means the fully qualified domain name (FQDN) may be
shared across all device instances. Other products with a
more complicated backend infrastructure may only share
second-level domains among devices. Products could also
use the same set of IP addresses across all devices.

Dataset reliability: Crowdsourced home IoT datasets
can sometimes contain “dirty” data, such as traffic from a
compromised device. Thus, verifying a product’s network
behaviors through multiple device instances is important.
More devices contacting a particular host may suggest
that host is a legitimate endpoint for the product. We
set thresholds for considering an observed endpoint valid.
Specifically, for a threshold of n, a user will only consider
a host valid if the host appears in the traffic of at least n
devices in the sample.

Sample size: When using a public dataset to study device
behavior, it is important to use a dataset large enough to
account for potential discrepancies. If the sample size is
too small, one may miss key variations, leading a user to
falsely believe their device is compromised. In contrast,
larger datasets can be costly to collect and maintain.

Stability over time: A dataset is a snapshot in time,
showcasing how home IoT devices behaved in the past.
A device’s legitimate endpoints may have changed since
data collection, raising questions about a dataset’s lifetime.

2.3. Background on Allowlists

A firewall is one of the most popular network security
systems. It governs the incoming and outgoing traffic be-
tween a protected network (e.g., a home network) and an
unprotected one (e.g., the Internet). In homes, firewalls are
often built into consumer network routers. When people
connect their IoT devices to their home network, these IoT
devices will then naturally be protected by this firewall.

There are two main security strategies for firewalls:
allowlists and blocklists. Allowlists specify which network
packets are allowed to cross the firewall based on the net-
work addresses or many other characteristics. Packets that
do not match the specification are dropped. In contrast,
blocklists only drop packets matching the specification,
allowing everything else. Both allowlists and blocklists
have pros and cons. Blocklists, such as ad blockers, are
more frequently used because it is hard, if not impossible
in some computing contexts, to enumerate all potential
network hosts that a device may visit legitimately, espe-
cially when the device is a general-purpose device like
a smartphone. Allowlists are far more restrictive, only
allowing traffic from previously enumerated sources. With
an allowlist deployed, a remote attacker typically cannot
establish a connection with the IoT device as they would
typically be sending packets from a network host not
included in the allowlist, resulting in their traffic being
dropped at the home’s gateway. Even if the victim’s IoT
device becomes compromised, a firewall allowlist could
prevent the compromised device from sending data to the
attacker because the attacker’s endpoint hopefully would
not be included in the deployed allowlist.



2.4. Threat Model

We imagine there is a user who has several home IoT
devices connected to their home network, over which they
have total control (e.g., for deploying an allowlist). In our
threat model, a remote attacker aims to compromise these
IoT devices, forcing them to contact arbitrary, remote
endpoints outside the home network either to exfiltrate
data (e.g., send private data about activities in the home to
an endpoint the attacker controls) or to disrupt endpoints
unrelated to the IoT device (e.g., as part of a broad DDoS
attack). We assume the attacker does not have the ability
to compromise the vendor’s backend infrastructure (e.g.,
meethue.com), nor poison the victim’s DNS. Local
attacks (e.g., on WiFi or ZigBee) are out of scope.

Furthermore, we assume that most devices whose
network data is being contributed to the crowdsourced
dataset have not been compromised as of the time of data
collection. We also assume that they are correctly labeled
as a particular product. Employing a higher threshold
(“dataset reliability” in Section 2.2) can mitigate this
problem, but only for a limited number of compromised or
mislabeled devices. For this reason, Sybil attacks in which
a single attacker contributes data purporting to come from
different households would be problematic. Furthermore,
our approach would be vulnerable to supply chain attacks,
which could change the behavior of many devices of some
product type and which we consider out of scope.

3. Testbed

In this paper, we use the IoT Inspector dataset for
crowdsourced measurements of home IoT device behavior
in the wild; see Section 5.1 for details on this dataset.
For clarity in presenting analyses and to make the cost
of acquiring devices feasible, we selected 24 of the most
frequent products in the dataset. All analyses, both on
IoT Inspector and in our lab, use the following 24 de-
vices: Amazon Echo Dot; Amazon Fire Stick; Amazon
Ring; Belkin Wemo Plug; Chamberlain Garage; DLink
Camera; Ecobee Thermostat; Google Chromecast; Google
Home; Google Nest Thermostat; Honeywell Thermostat;
iDevice Switch; iHome Switch; Lifx Light; Logitech
Harmony; Lutron Bridge; Nintendo Switch; Philips Hue;
Roku Streamer; Sonos One; Sony Console; TP-Link Plug;
Wyze Camera; and Xiaomi Vacuum.

To test the devices in a way that paralleled how a
real user might interact with them, we aimed to identify
each device’s key functionalities (see Appendix B). To
this end, two researchers independently conducted cogni-
tive walkthroughs for all 24 devices, their accompanying
manuals, and key information online. The researchers met
and merged the functionalities identified. For devices with
third-party integrations, we randomly selected skills, apps,
and media outlines hoping to capture both popular and un-
popular examples. Unfortunately, it is intractable to try all
possible combinations, limiting our comprehensiveness.

Implementation of Network Allowlists (MUDs): In our
lab, we used a Jetson Nano running Ubuntu 20.04 as an
access point and to intercept home IoT devices’ network
traffic. The Jetson Nano serves as a NAT gateway. To ma-
nipulate network traffic packets, we implemented our own

{
" device_name " : " Amazon Echo i n Study " ,
" device_mac " : "XX−XX−XX−XX−XX" ,
" d e v i c e _ i p " : " " , # o p t i o n a l
" produc t_name " : " amazon_echo " ,
" f e a t u r e " : " hos tname " ,
. . . ,
" a l l o w l i s t " : {

" i p " : s e t ( [
" 5 2 . 9 4 . 2 2 9 . 1 2 2 " ,
" 1 0 4 . 1 5 4 . 1 2 7 . 1 0 7 " ,
. . .

] ) ,
" hos tname " : s e t ( [

" avs − a l e x a −3−na . amazon . com" ,
" prod . i n s i g h t s . comms . a l e x a . a2z . com" ,
. . .

] ) ,
" domain " : s e t ( [

" amazon . com" ,
" amazonaws . com" ,
. . .

] ) ,
" p a t t e r n s " : {

" guc3 − a c c e s s p o i n t −a− p53 l . ap . s p o t i f y . com" : " ( guc | gae | gew ) [0 −9]+ −
a c c e s s p o i n t − . * \ . ap \ . s p o t i f y \ . com" ,

" s p e c t r u m . s3 . amazonaws . com" : " s p e c t r u m \ . s3 \ . amazonaws \ . com" ,
. . .

}
}

}

Figure 1: Example of our allowlist policy format.

interception tool through scapy, a Python library that
manipulates network packets, and NetfilterQueue, a
Python library that intercepts packets using iptables,
meaning it only naturally supports IP addresses and ports.
To log hostnames, we use the router’s default DNS
resolver to resolve IP addresses encountered. We have
(anonymously) open-sourced our implementation [2].

We also measure how transferring observations of one
device’s traffic to another in a simulated MUD allowlist
impacts device functionalities. We enforce that the latter
device may only contact endpoints the former device also
contacted, implementing allowlists like those shown in
Figure 1 via NetfilterQueue. To enforce allowlists
that include hostnames or domains, we must take addi-
tional steps. All hostname rules are resolved to IP ad-
dresses and added to IP-based allowlists for enforcement.
If the queried hostname in the DNS query is on the
allowlist, then the firewall forwards the query to the DNS
resolver. Otherwise, the firewall drops the DNS query.
Once a DNS response is received, the firewall records the
included IP addresses before forwarding it to the device.

Domain-based rules are handled similarly, with the
difference that DNS queries are checked against domain-
based allowlists instead of those based on hostnames.
There is a cold-start issue for relying on DNS. Because the
firewall can be activated at any time, some devices may
have cached hostname-IP mappings. The firewall will not
know about the cached mapping and will incorrectly reject
some traffic until the device performs a DNS query.

4. Lab: Impact of Location

To explore how the passage of time and changes in
geolocation impact home IoT devices’ network traffic,
we conducted initial experiments in our lab. Specifically,
we collected traffic from the aforementioned 24 popular
home IoT devices in our US-based lab. We used the
traffic to establish expected network behaviors (i.e., the
endpoints the contacts). We then enforced MUD-style
network policies both on the original network in the same
lab, as well as on a VPN operating on a different continent
to see how these allowlists impacted device functionality.



While prior work proposed generating MUDs from
observations of a device’s network traffic [14], [15] and
reported that home IoT devices contact different services
when placed in the UK versus the US [25], those studies
did not examine the impact on device functionality like
we do, nor perform measurements that were nearly as
comprehensive. Another study investigated how blocklists
of non-essential traffic impacted device functionality [21].
In contrast, our simulated MUDs are allowlists that must
capture all of a product’s necessary endpoints.

4.1. Methods

Before running any tests, two researchers collabora-
tively determined each of the 24 products’ main func-
tionalities by examining product manuals and companion
apps. Appendix B gives a complete list of functionalities.
We excluded functionalities outside the product’s main
purpose (e.g., changing the device name). We also ex-
cluded functionalities that do not require Internet connec-
tivity, such as casting a webpage to a Google Chromecast.

Data Collection: With each device’s functionality doc-
umented, we exercised all functionalities listed in Ap-
pendix B one by one, recording the resultant network
traffic. No network policies (i.e., no MUDs) were applied.

Policy Enforcement: We then created allowlists based on
the traffic observed, similar to the approach used in prior
work [14], [15], [19]. We then waited a week and factory
reset all the devices. Each device was re-initialized and
registered as a device from a different country (Germany)
at least one week later. We chose the US and Germany as
example large markets on different continents with differ-
ent regulatory regimes. Furthermore, the device’s traffic
was tunneled via a VPN through a Digital Ocean server
in Germany after performing a factory reset on the device.
Enforcing the allowlists we created, we again exercised all
24 devices’ functionalities one by one, recording whether
each functionality continued to work as before. We re-
peated this procedure without using the VPN to compare
how the device’s network traffic in our same lab compared
to its traffic from at least a week previous. We recognize
that this approach has limitations. Notably, a product
may vary in its firmware or hardware across countries
and thus may vary in multiple ways. Nonetheless, our
experiments show that the same device produced for the
US region can vary in network behaviors simply because
it is registered in another country and its traffic is tunneled
through that other country. An additional limitation is that
we performed each function for each device only once,
increasing the possibility of measurement errors.

Endpoint Representation: We tested allowlists repre-
senting endpoints by their second-level domain name
(e.g., amazon.com) and by their hostname, or FQDN
(e.g., avs-alexa-6-na.amazon.com). We also in-
troduced and tested hostname patterns, which attempt
to abstract similar hostnames into a regular expression.
To generate patterns, we used DBSCAN with a precom-
puted distance matrix to group similar hostnames for each
product. We clustered each hostname based on its lowest-
level subdomain (i.e., the leftmost part of the FQDN),
using the remaining part of the FQDN for grouping so

that different domains or subdomains are not clustered
together. We condense consecutive numbers to “[0-9]+”
because digits rarely carry meaning in this context. Once
a cluster was identified, we generated an ordered list of
the longest non-overlapping common substrings for all
hostnames in the cluster. If we could further group the
remaining parts, we accepted these variations rather than
using a wildcard to minimize the attack surface. If the
remaining parts appeared random, a wildcard replaced
them. For example, hostnames used by Apple notifica-
tions became the pattern [0-9]+-courier.push.
apple.com. Spotify access-point hostnames became
guc3-accesspoint-a-.*.ap.spotify.com.

4.2. Variability in the Same Lab

Surprisingly, 10 of the 24 devices lost at least some
functionality when we enforced hostname-based allowlists
created from each device’s earlier network behaviors in
the same US-based lab (Figure 2a). Even when we only
enforced more permissive domain-based allowlists, 6 of
the 24 devices were still affected. Even for the same
devices in the same lab, some network behaviors changed
between data collection and allowlist enforcement.

At one extreme, the Wyze Camera completely stopped
working when enforcing allowlists because it uses IP ad-
dresses for live video feeds. We did not observe any DNS
traffic relating to these IP addresses. Similarly, when reset-
ting the Amazon Fire, some IP addresses were contacted
without corresponding DNS traffic. We suspect these ad-
dresses were communicated in encrypted payloads.

4.3. Variability When Changing Location

With the allowlists unchanged, we observed more fail-
ures when the device was instead registered as a European
device and its traffic was tunneled over a VPN in Germany
(Figure 2b). Of the 24 devices, 16 partially or fully
stopped functioning for hostname-based allowlists, and 11
for domain-based allowlists. This result emphasizes that
not only are home IoT devices’ network behaviors region-
specific [25], but attempting to generalize and enforce
allowlists across regions will lead to functionality failures.

Comparing the results from the two networks let us
isolate the variability caused by geolocation. The key rea-
son was that some devices use different hostnames or do-
mains across countries. For example, the Xiaomi vacuum
contacted us.ot.io.mi.com in the US, but de.ot.
io.mi.com in Germany. Amazon Echo tended to contact
hosts like avs-alexa-6-na.amazon.com in North
America (“NA”). In Europe (“EU”), it instead contacted
hosts like avs-alexa-7-eu.amazon.com. These re-
sults showcase that observations made from a single de-
vice may not be transferable to another device of the
same product, particularly (but not exclusively) if that
device is located elsewhere in the world. Consequently,
small-scale, in-lab studies may fail to capture how home
IoT devices’ network behaviors vary. To explore factors
beyond geolocation, we turn to the crowdsourced dataset.

5. Dataset: Transferability
As shown in our initial investigation in our lab, a home

IoT device’s network behaviors may change due to the
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(b) Results tunneling through a German VPN.

Figure 2: Functionality degradation when enforcing the MUD-like allowlist created from prior traffic in our lab.

passage of time or a change in location. Observations from
one set of devices in one place may not showcase the full
variability of that product’s network behaviors.

We use the term transferability to refer to the capacity
to transfer characterizations of observed network behavior
from one home IoT device to another. In this section,
we use the crowdsourced IoT Inspector dataset to further
explore the variability of home IoT devices’ network
behaviors. For consistency, we used the same 24 products
as for our in-lab measurements. We identified several
sources of variability, including load balancing, content
delivery networks (CDNs), geolocation, variable remote
ports, and user-specific DNS resolvers. We also quanti-
fied how the considerations outlined in Section 2.2—host
representation, sample size, and stability—impacted the
transferability of network behaviors.

5.1. Dataset and Data Cleaning

To examine the generalizability of home IoT devices’
network behaviors at a larger scale, we used the IoT
Inspector dataset [17], which includes the network traffic
from over 5,000 users’ home IoT devices. Original data
collection occurred between April 8 and July 24, 2019,
documenting 38,164,870 network flows (combinations of
device ID, local port, remote IP address, and remote port).
That dataset was collected from human subjects with the
approval of the original authors’ IRB. They also obtained
permission from their IRB to share that data with us.

We analyzed the subset of IoT Inspector containing
only devices with product names and network traffic
recorded. This subset consists of 5,423 unique devices,
representing 424 unique products from 80 different ven-
dors among 43 device types. These 5,423 unique devices
came from 1,464 different households. For clarity, the
body of the paper reports on the 24 products (3,461
devices total) appearing most frequently in the dataset,
for which we also conducted in-lab experiments. The
appendix presents analogous graphs with 52 products.

The dataset contains the following information, some
of which involved post-processing by the original authors.
Each flow contains the device’s product and vendor,
entered manually by participants on the IoT Inspector
user interface. It also contains the remote IP address
and remote port contacted by the device. The original
authors attempted to compute additional information about

the remote destination via a best-effort process detailed
in the original paper [17] that included examining DNS
traffic. Specifically, IoT Inspector attempted to identify
the domain name corresponding to the IP addresses of
endpoints using Server Name Indication (SNI) before
resorting to reverse DNS lookup and passive DNS if SNI
information was unavailable. Each flow is also associated
with the household’s timezone, as opposed to a more
precise geo-location, to respect participant privacy.

While the original authors performed some data clean-
ing [17], we further cleaned the data in two ways. First,
because product names were manually entered by partici-
pants, they may not be reliable. We regard a device’s prod-
uct name as likely mislabeled if the device never contacts
any domain that 20%+ of the other devices with the same
product name commonly contact. We found 16 potentially
mislabeled devices across 10 products, excluding them
from further analysis. In Section 5, we use thresholds to
automate accounting for a small number of mislabeled
devices in practice. We manually examined other outliers.
One device labeled as a Belkin Wemo switch contacted
26,594 unique domains (very unusual relative to other
Belkin Wemo switches), so we excluded it.

We also aimed to identify hostnames and domains
missing from IoT Inspector. Although many traffic flows
on the Internet are preceded by a corresponding DNS
lookup, IoT devices are often already installed and op-
erational when the user runs IoT Inspector, so the dataset
may not capture the DNS lookup associated with a flow.
In other words, as IoT Inspector was collected plug-and-
play style not all contacted endpoints have a correspond-
ing DNS request. Although the original authors of the
dataset guessed missing hostnames (those without asso-
ciated DNS traffic) using passive traffic monitoring and
reverse DNS lookups, we determined these methods to be
unreliable. For example, a reverse DNS lookup from an IP
address often resolves to particular infrastructure, such as
a server, rather than a general hostname. About 62.1% of
the collected flows contained these potentially unreliable
hostnames. To further validate the data, we first compared
the IP addresses of any two packets—one known to have
the correct hostname based on associated DNS queries
in the dataset and an IP address without an associated
lookup—that shared the same hostname. If the second
packet had the same IP address as the first, we concluded
it had the correct hostname. To mitigate the effects of



virtual hosting, we first performed this process at the
product level, then repeated it at vendor level. This process
reduced the fraction of flows with unreliable hostnames to
34.4%. We repeated this approach using ASNs, leaving us
with 30.4% of flows with an unreliable hostname.

Limitations: Because the IoT Inspector dataset was
crowdsourced from volunteers, some data that would have
been interesting to analyze was intentionally not collected
to protect participant privacy. Unlike traffic collected by
researchers in a lab, IoT Inspector is aggregated on 5-
second intervals and does not contain application layer
data. It is thus impossible to perform analyses like iden-
tifying patterns in inter-packet arrival times. That said,
measuring home IoT devices’ variability requires a dataset
that is as diverse as possible (e.g., collected worldwide
from different network environments). IoT Inspector is
the best available. These privacy-preserving limitations
would likely apply to any crowdsourced dataset. We can
nonetheless identify variability in home IoT devices’ net-
work traffic and determine to what extent observations
transfer between devices. While we obtained two other
IoT datasets from researchers at other institutions, both
were collected in labs with only one or two devices per
product, which made studying variations impossible. As
we are unaware of any other large-scale, crowdsourced
home IoT datasets, we proceed despite these limitations.

Ethics: This paper reports on analyses of new data
we collected in our lab, as well as secondary analysis
of IoT Inspector data. Data collection in our lab did
not involve human subjects or sensitive data. The IoT
Inspector dataset, on the other hand, was collected by its
original creators from human subjects and thus required
IRB approval, both to collect and to share with us. The
original researchers discuss their IRB approval on their
webpage [18]. We worked with their IRB to obtain express
permission for the data to be shared with the specific
researchers involved in this project for our analyses.

Availability: We have made our analysis code available
in an anonymized GitHub repository [2]. Unfortunately,
IoT Inspector data cannot be shared without approval
from the original authors’ IRB and proper training of data
recipients [17]. We instead provide synthetic sample data
in the correct format. That repository also contains our
code for enforcing the MUD-style allowlists in our lab [2].

5.2. Methods

In this subsection, we first introduce our metric for
measuring the transferability of network behaviors. We
then list the five variables that can affect the transferability
of network behaviors observed from one product.

5.2.1. Key Metric. We measure the transferability of net-
work behaviors in part through retrospective simulations
based on the IoT Inspector dataset. For a given product,
we calculate a value we term the median fraction of
observed flows (MFOF). Intuitively, the MFOF captures
the fraction of traffic previously observed from one set
of devices that is still applicable to a different set of
devices. A high MFOF is desirable since it reflects a
product’s network behaviors that are consistent across

different devices. We take the median fraction instead
of the mean because the distribution can be very skewed.
Formally, we define MFOF as:

MFOF (D,D′) = median({ |F
d
D|

|F d|
,∀d ∈ D′}) (1)

where D is the group of devices that are under obser-
vation, D′ is the group of devices that have never been
observed (but are the same product), d is a device in D′,
F d is all the flows transmitted on d, and F d

D is the fraction
of d’s flows that have already been known by observing
D. We require D ∩D′ = ∅ for a fair evaluation. A flow
is a combination of the device ID, the local port, the IP
address of the remote endpoint, and the remote port.

5.2.2. Measurement Methods. For each product, we ran-
domly split the devices into five experimental groups as
part of a cross validation process. The remaining 80% of
devices in each fold are the observation group. We took
the union of all traffic destinations contacted by devices
in the observation group and considered them the given
product’s expected network behaviors, using MFOF to
measure transferability to the experimental group.

5.2.3. Measurement Variables. We introduced five vari-
ables corresponding to the five challenges in Section 2:

1) Host representation is the level of abstraction for
describing hosts. In addition to our focus on domains,
hostnames, IP addresses, and hostname patterns (see Sec-
tion 4.1), the appendix also compares other formats, such
as subnet and BGP prefix. Ports can be added on top of
any selected host representation.

2) Dataset reliability is captured by the threshold,
or the minimum number of devices on which we need
to observe an endpoint to add it to the allowlist. The
threshold can be changed to adapt to a dataset’s reliability.

3) Geolocation representativeness refers to the match
between the location of devices in the observation and
experimental groups. We use timezone as a proxy for
approximate geolocation.

4) Sample size As discussed previously, it was an open
question how many devices are needed to obtain a general
picture of a product’s network behaviors. Therefore, when
randomly sampling devices from a product, we gradually
increase the sample size from 5 to 200 with a step size of
five. For each sample size, we performed five-fold cross
validation five times and took the mean per product.

5) Stability references the length of time for which
a previously collected network traffic dataset continues to
capture a product’s network behavior accurately. That IoT
Inspector is three years old lets us measure the stability of
a product’s network behaviors. We calculated the lifespan
of each destination by counting the days between the
destination’s first appearance in the dataset and the last.

5.3. Coverage of Network Behaviors

First, we took the union of the endpoints seen across
all devices for each of the 24 products, analyzing the cov-
erage, or the percentage of a product’s remote destinations
contacted by a given sample of devices of that product. If
devices of a particular product behaved similarly to each
other, coverage would approach 100%. For a number of
products, however, this was not the case. Figure 11 in the



appendix shows the coverage for different sample sizes for
three key host representations: domains (e.g., dropcam.
com), hostnames (e.g., oculus1802-us1.dropcam.
com) and IPv4 addresses (e.g., 35.186.28.155). For
each sample size, we averaged the coverage over 100 ran-
dom samples. For most products, the coverage for domain
representations approached 100%, even for small samples.
However, the coverage for hostnames and IP addresses
was often substantially lower. For many products, a given
device may contact different hostnames and IP addresses
even when contacting the same domain.

While we expected to observe low coverage for IP
addresses, we were surprised that hostnames followed
a similar pattern for some products (e.g., Google Nest,
Amazon Ring). Averaged across all 24 products, 95%
coverage was only achieved with a sample of 54.9% of
the devices of that product in the dataset when using
hostnames, compared to 64.1% when using IP addresses.
For 99% coverage, the percentages increased to 79.2%
(hostname) and 83.8% (IP address). The low coverage in
small samples underscores that observations made from
one or two devices—as in prior work [11], [14], [15],
[25]—miss key variability and thus fail to generalize.

5.4. Sources of Variability

Load Balancing and Content Delivery Networks: A
major source of variability appeared to be the use of
different, but related, hostnames to support load balanc-
ing and content delivery networks (CDNs). For example,
Apple Push Notification uses multiple servers with host-
names like 27-courier.push.apple.com, with the
number (27) varying across devices. When many similar
hostnames exhibit small variations, observations made
based on precise hostnames are unlikely to generalize.

The good news is that most hostnames follow pat-
terns. In the simple example above, only the number in a
hostname changes, spurring the pattern representation we
investigated. Some hostnames varied in more than just
numbers. For example, we observed Spotify hostnames
with forms like guc3-accesspoint-a-f002.ap.
spotify.com, where f002 varied. That said, we
also observed seemingly random hostnames (e.g.,
d37ju0xanoz6gh.cloudfront.net), making it
hard to know what hostnames a device should expect.

Regionalization: Although Section 4 already described
some regional variation in endpoints, IoT Inspector
showed more complicated cases. Streaming media desti-
nations varied across regions, reflecting local interests. For
example, we observed endpoints like tf1.fr (a French
TV channel contacted by a Google Chromecast) and
bell.ca (a Canadian internet service provider contacted
by an Amazon Echo and a Chromecast).

DNS: Because users or their ISPs assign a local DNS
resolver, DNS traffic was an additional (expected) source
of variability. We observed a long tail of DNS traffic.

Variable Remote Ports: Although most remote hosts
used only a few dedicated ports (e.g., port 443 for
HTTPS), as shown in Figure 3, some used a large number
of remote ports. For example, Amazon Ring devices in
our dataset contacted only 72 unique domains, but they
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Figure 3: The number of ports used by remote hosts under
different endpoint representations. Few remote hosts used
multiple ports for incoming connections.

contacted the domain amazonaws.com on 1,617 differ-
ent remote ports. This was not an artifact from a single
device; 38.3% (N = 23) Amazon Rings contacted 10+
remote ports, and 21.7% (N = 13) contacted 20+ ports.
Some ISP-specific hosts also used a range of ports. For
example, three Wyze cameras (all in one household) con-
tacted mycingular.net through 2,399 unique remote
ports. Two Amazon Echo devices from another household
contacted sbcglobal.net through 3,858 remote ports.

Other Causes: Some variability may be artifacts of
IoT Inspector’s data collection process, which can occur
to any real-world traffic dataset. For example, 26.7% of
endpoints are IP addresses without any associated host-
name or domain. Either IoT Inspector missed relevant
DNS traffic, or these hosts were actually contacted using
hardcoded IP addresses. In fact, we observed the latter in
our own experimentation when the Wyze camera in our
lab contacted some hosts without querying DNS. Prior
work [10] also found that Belkin Wemo plugs transmitted
IP addresses in payloads at the time of their data collection
in 2020. We found they now transmit hostnames.

Limitations: Some products (e.g., Amazon Echo) have
multiple generations that we grouped into a single product.
Different generations may behave differently. Even for the
same generation, behavior may change depending on the
software or firmware version. As detailed in Section 6, a
recent update to Belkin Wemo smart plugs caused them
to contact completely different endpoints. Furthermore,
product names were provided manually. Some volunteers
gave only a general name, collapsing different models.

5.5. Impact of Endpoint Representation

We tested seven possible representations of endpoints.
In this section, we contrast representing endpoints by their
domain, pattern, and hostname. Appendix E presents less
successful alternatives (e.g., subnet, BGP prefix).

As shown in Figure 4, 23 out of the 24 products had
an MFOF above 0.95 using (second-level) domain repre-
sentations with the threshold set to 1. Thus, domains are
very likely to be consistent across devices of a particular
product. The only exception was the iDevices switch.
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Figure 4: MFOF of behaviors observed from, and applied
to, the same product (train-test split). Products (rows) are
grouped by type. The color indicates the proportion of
observation group flows captured.

Observations abstracted to hostname and pattern rep-
resents also transferred across devices for most, but not
all, products. With threshold=1, hostname representations
achieved an MFOF greater than 0.95 (mean = 0.96) for
20 of the 24 products. Using pattern representations, 22
of the 24 products again achieved an MFOF greater than
0.95. Pattern representations outperformed hostnames at
higher thresholds for products like Belkin switches.

5.6. Sample Size Required

The more devices one observes, the less likely one will
encounter unexpected behaviors in the future. However, it
is impossible to observe every single home IoT device in
the world, which makes it crucial to understand how many
devices one needs to observe to achieve generalizable
knowledge of a product’s network behaviors. Thus, we
calculated the MFOF for various sample sizes.

Figure 5 shows the results. In general, hostname rep-
resentations necessitated a larger sample than domain
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Figure 5: The MFOF increases with the training sample
size (threshold = 1). Blanks indicate insufficient data.
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names. While they performed similarly for some devices,
patterns outperformed hostnames for others.

and pattern representations. For hostname representations,
only 18 of the 24 products ever achieved an MFOF of at
least 0.95, and it took 25 devices on average to do so.
In contrast, pattern-based allowlists enabled 22 products
to achieve an MFOF of at least 0.95, requiring only
10 devices on average. These numbers, however, varied
significantly across products, particularly for hostname
representations. While 5 Ecobee Thermostats were suf-
ficient to map the hostnames used, 200 Sonos Speakers
were needed to form an equivalent understanding.

5.7. Adapting to Unreliable Data

Network traffic datasets collected through crowdsourc-
ing can be very noisy, which is why a threshold needs to
be set. The threshold, specifying the minimum number of
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different devices on which an endpoint must be observed
for it to be added to the allowlist, trades off generaliz-
ability for reliability. Increasing the threshold typically
admits fewer endpoints, making observations more reli-
able, but may miss some crucial behaviors. Interestingly,
we observed that increases in the threshold were not
always proportional to the decrease in the amount of traffic
allowed. For some products, it was possible to have a high
threshold (better reliability) without losing much.

Crowdsourced datasets often contain noise. Setting
higher thresholds to remove endpoints that only appear for
one or two devices can reduce this noise. However, when
the threshold was set to 5, only 12 products had an MFOF
of at least 0.95 when using hostname representations.
In contrast, 16 products had an MFOF of at least 0.95
when using pattern representations. Emphasizing these
trends, Figure 6 shows the five products whose MFOF
increases by more than 0.1 by switching from hostnames
to patterns. Appendix E shows similar trends hold for a
larger dataset of 52 products. In short, many important
hostnames appeared only a few times in the dataset.

To further understand the relationship between thresh-
olds and the MFOF, we sampled 50 devices from each
product, calculating the MFOF under thresholds ranging
from 1 to 36 with a step of 5. The process was repeated
20 times, taking the mean. As shown in Figure 12 in
the appendix, some products effectively had plateaus in
which increasing the threshold minimally impacted the
MFOF. In one of the more extreme examples, the MFOF
for Google Home was similar between thresholds of 1 and
26. One possible explanation is that, upon increasing the
threshold, only the most fundamental endpoints contacted
by nearly all devices of that product are kept, and most
flows are to those endpoints. For Chamberlain Garage,
most endpoints in the long tail were various DNS re-
solvers. Only two endpoints were contacted by the major-
ity of those devices: connect1.myqdevice.com and
connect.myqdevice.com. In contrast, products that
stream user-specified content rarely exhibit this plateau.

5.8. Accounting For Regionalization

IoT Inspector primarily consists of devices from North
and South America. It is common for datasets to be
geographically biased; collecting data globally requires
tremendous effort. Thus, it is important to understand how
geographically biased data impacts the representativeness
of observations. We created regression models that gauge
how region impacts MFOF. Because IoT Inspector does
not contain location information, a common privacy re-
quirement for public dataset, we used timezones as a
proxy, creating three regions: Region A (UTC-02:30 -
UTC-10:00), Region B (UTC+01:00 - UTC+04:00), and
Region C (UTC+5:30 - UTC+12:00). We selected the six
products in the dataset that have at least 10 devices per
region: Amazon Echo, Belkin Switch, Google Chrome-
cast, Google Home, Philips Hue, and Sonos Speaker. We
created linear regression models in which the MFOF was
the dependent variable and the regions of the training
and testing samples, the product, and the (log of the)
sample size were the independent variables. Table 7 in
Appendix D contains the regression tables. All coeffi-
cients of the observation group’s region, the experimental
group’s region, and their interactions were significant. At
a high level, network behaviors observed from one region
cannot fully depict the network behaviors that appeared
in another region. Regional differences in the MFOF can
be observed even when keeping the sample size constant.
For example, applying observations made from devices
in Region A to devices in Region C caused a drop of
around 0.1 in MFOF, which means around 10% of traffic
is not expected using the observations made from Region
A. Therefore, if the data is geographically diverse, care
should be paid to region-specific observations.

5.9. Observation Stability and Lifespan

Home IoT products’ network behavior might change
over time. To better understand the stability of their net-
work behaviors, we measured each endpoint’s lifespan, or
the time between that endpoint’s first and last appearances
(per product) in the IoT Inspector dataset. We used an
extended version of the IoT Inspector dataset containing
three years of traffic data (April 2019 to July 2022) shared
with us by the original authors. This extended dataset is
in the same format as the main dataset, except that the
product information was inferred (mean precision=0.995).
We excluded iHome switches because their first and last
appearances were separated by less than a day.

Figure 7 shows the distribution of lifespans. Most
products did not change endpoints frequently. Most end-
points were active for years in the dataset. Domains
usually had a longer lifespan than hostnames. Of the 23
products in the extended dataset, 14 products had a median
lifespan of over a year for hostnames, and 18 for domains.
Note that these are lower bounds; many remain active.

6. Lab: Using Crowdsourced Data

Having further analyzed the variability of 24 home
IoT devices’ network traffic using the crowdsourced IoT
Inspector dataset, our final experiments returned to the
lab. Specifically, we tried applying the characterizations of
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Figure 8: Number of devices (top) and functionalities (bot-
tom) that work when enforcing crowdsourced allowlists.

each product’s network behavior from this crowdsourced
data to the 24 devices in our lab. We were again specif-
ically interested in whether the devices would remain
functional if only allowed to contact the endpoints learned
from the crowdsourced data. Prior work aimed at blocking
superfluous endpoints reported that many traffic destina-
tions are not necessary for an IoT device to function [21].
Because our simulation of a MUD was an allowlist, not
a blocklist, the completeness of our characterization was
paramount. As in Section 4, we tested 144 functionalities
across 24 devices in our lab when enforcing MUD-like
allowlists. In this final experiment, though, the allowlists
were based on IoT Inspector data that was a few years
old and from devices other than our own.

6.1. Experimental Setup and Protocol

Our experiments resembled those from Section 4, ex-
cept here we enforced different allowlists, only allowing
a device to contact destinations determined from the IoT
Inspector dataset. All other traffic was dropped. We ran
experiments with key variations (e.g., sample size, end-
point representation) to test the real-world impact of the
parameters whose abstract transferability we previously
studied. After deploying the relevant allowlist, we again
tried to exercise each of the product’s functionalities. If
one failed, we repeated the experiment to confirm.

Whenever possible, we tested each device from an
external network (i.e., interacting with the companion app
outside the lab’s network) to maximize Internet exposure.
Only when devices could not be controlled remotely (e.g.,
Google Chromecast) did we use the local network. We
also used voice commands to control products and record
the corresponding network traffic. Amazon Echo was used
as the default receiver for voice commands.

The experiment consisted of two rounds of testing.
The first was conducted in late 2021 on the nine most
popular devices in the IoT Inspector dataset. In late 2022
and early 2023, we tested the 15 additional products.

6.2. Results Overview

As shown in Figure 8, domain representations of the
MUD-like allowlists generated from crowdsourced data
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enabled most products to continue to work. In fact, 17
of the 24 products were fully functional, 5 were mostly
or partially functional, whereas only 2 were completely
nonfunctional. That 128 of the 144 total functionalities
we tested (Figure 8) across the 24 products continued to
work when enforcing domain-based allowlists is notable
since the IoT Inspector data was collected years prior.

Conversely, hostname and pattern-based host represen-
tations were much more fragile. The devices in our lab
were blocked from contacting a number of endpoints not
previously seen in the IoT Inspector data, causing some
devices to become non-functional. As a result, for pattern-
based representations, only 9 products were fully func-
tional, but 9 were completely nonfunctional. Even worse,
for hostname-based representations, only 7 devices were
fully functional, but 10 were completely nonfunctional.

Rare—But Impactful—New Domains: Although the
IoT Inspector dataset was collected in 2019, both rounds
of the experiment showed that a product’s domains rarely
change and even more rarely affect the product’s func-
tionality. As shown in Figure 9, during the past three
years, only 3 of the 24 products changed the domain they
used. The Belkin Wemo Switch changed its main domain
name, while the iHome Switch and Honeywell thermostat
changed the third-party services they adopted. Two out of
the three devices completely stopped working.

Volatile Hostnames: We found that hostnames con-
tinued to be volatile. Due to load balancing and CDNs,
hostnames not captured by even the pattern abstraction
appeared for the first time in our lab. That said, 70
functionalities still worked after three years when using
hostnames, and 81 when using patterns. These function-
alities were typically supported by dedicated hostnames,
resulting in much cleaner traffic on the device side. For in-
stance, Google Home only needs www.google.com for
all functionalities other than media (e.g., playing music).
Controlling other devices or querying external information
were handled by server-to-server communication.

Streaming Media: Dedicated hostnames for streaming
audio or video were rare, but our pattern representation
better captured such endpoints. Of the 11 streaming func-
tionalities tested, 7 did not work because of hostnames
not seen in the dataset. Four of these seven functionalities



used hostnames captured by our pattern representation.
Nonetheless, streaming media for IoT TVs, smart speak-
ers, and similar media-focused devices are a potentially
insurmountable hurdle for MUD-like allowlists unless
closely matched data is used to generate the allowlist.

6.3. Detailed Reasons for Failures

As shown in Figure 9, apparent API changes were
the main reason for major changes in network behavior,
but most such changes were only evident in hostname
and pattern representations, not domains. Such changes
impacted only 28.5% of functionalities, but 41.7% of the
devices we tested. Tables 5–6 in Appendix C detail the
types of functionalities that failed and the associated root
causes we identified for each functionality failure.

New Services and API Changes: New services and API
changes were the most frequent cause of failure. New do-
mains caused functionality failure for 3 of the 24 devices
in our testbed, but new hostnames caused functionality
failures for 10 of the 24, as shown in Figure 9. Using
Belkin Wemo plugs as an example, when the IoT Inspector
dataset was collected in 2019, Belkin Wemo plugs used
api.xbcs.net for their API, which was confirmed
in previous papers [17], [21]. However, Belkin recently
added a new hostname, deviceapis.xwemo.com, to
their backend infrastructure. Blocking this previously un-
seen API endpoint put the device offline. Ironically, the
original API endpoint was still live, and the switch in our
lab still contacted it from time to time. Vendors may also
add new features. In our case, the new Sonos Radio re-
quired a previously unobserved domain: sonos.radio.

Interaction Dependencies: Examining the relationship
between devices’ functionality and network traffic in our
lab, we noticed an additional cause of failures: interaction
dependencies. That is, some functionalities were depen-
dent on the device completing a preceding functionality.
For example, if streaming music is not available on Sonos
speakers, then all other functionalities, such as changing
the volume, failed. Connectivity checking was another
common and important dependency. Many devices, such
as the Google Home and Belkin Wemo Switch, performed
connectivity checking. If such checks fail, then the device
refuses to take any further commands until it believes it
is online again. Google Home uses www.google.com
for most functionalities, but connectivity checking is via
connectivitycheck.gstatic.com. Blocking the
latter leads to a Google Home that refuses to accept voice
commands. Endpoints related to key interactions must be
closely monitored for changes.

Load Balancing: CDN hostnames commonly included
seemingly random numbers or letters. Even with a large
dataset like IoT Inspector, not all CDN or load-balancing
endpoints will be observed. For example, our Ama-
zon Echo Dot tried to contact avs-alexa-14-na.
amazon.com, which was not observed in the dataset,
for Alexa services. Thus, it is hard to draw any
transferable conclusions from these hostname observa-
tions. Our lab experiments verified that patterns some-
times mitigate this failure. Seven of the eight func-
tionalities that failed due to load balancing can be

TABLE 1: Domains on ≥ 3 different products’ domain-
based allowlists. # indicates the number of products.

Domain # Domain #

amazonaws.com 13 nflxso.net 4
google.com 10 spotify.com 4
amazon.com 6 akadns.net 3
cloudfront.net 6 akamai.net 3
akamaitechnologies.com 5 amcs-tachyon.com 3
googleusercontent.com 5 apple-dns.net 3
akamaiedge.net 5 dropcam.com 3
apple.com 5 google-analytics.com 3
comcast.net 5 googletagmanager.com 3
facebook.com 5 gstatic.com 3
fbcdn.net 4 nflxext.com 3
doubleclick.net 4 qwest.net 3
googleapis.com 4 sbcglobal.net 3
googlevideo.com 4 teksavvy.com 3
nest.com 4 yahoo.com 3
netflix.com 4 youtube.com 3

fixed if we extract the patterns through clustering.
For example, when we attempted to play a playlist,
Sonos One contacted guc3-accesspoint-a-vr15.
ap.spotify.com. This endpoint was blocked by host-
names, but allowed by patterns.

Third-Party Services: Integration with user-chosen,
third-party services also caused failures. IoT Inspector
captured popular integrations with YouTube, Netflix, or
Spotify, but less popular services may encounter problems.

6.4. Domains Frequently on Allowlists

While the previous analyses focused on how allowlists
impacted products’ functionality, our final analysis turned
back to their impact on security. Specifically, we examined
the degree to which the 24 different home IoT products’
domain-based allowlists had domains in common. The
more domains they share in common, especially domains
an attacker might try to DDoS or on which an attacker
could establish an exfiltration sink, the worse for security.
Regardless, though, MUD-style allowlists containing a
relatively small number of domains still provide a vastly
smaller attack surface than the current state of affairs even
when they contain these shared domains.

We found that 90 domains appeared on at least two
different products’ domain-based allowlists. As Table 1
enumerates, 32 domains appeared on three or more prod-
ucts’ domain-based allowlists. Some of these domains
belong to major advertising networks like Facebook or
Google and are presumably used for tracking and profiling
users, or perhaps single-sign-on purposes.

Most notably, though, many of the most common
domains in Table 1 are cloud providers and CDN hosts
like Amazon Web Services (appearing on 13 allowlists),
Akamai, CloudFront, and Heroku. For many of these types
of hosts, an attacker could simply pay to spin up a virtual
machine on that domain to exfiltrate today. Furthermore,
because these cloud providers and CDNs host so much
content for other users, they can also become candidates
for a DDoS attack, though they also tend to be very well-
provisioned to resist DDoS attacks.

7. Related Work

Home IoT Network Measurements: Measurement stud-
ies often provide insights into a system’s performance and



behaviors. Home IoT is no exception. By collecting traffic
from several home IoT products in the lab, prior work has
assumed that the findings can be easily transferred across
devices of the same product, which may not be true for all
applications and products. For example, applications like
anomalous flows detection [5], [9], [12], [13], [22], [23],
[28], [29], [33], device fingerprinting [8], and blocklist
(or allowlists) creation [14], [15], [21] all typically rely
on training and evaluation data from dozens of devices in
a lab environment. Whether these techniques would apply
to a larger dataset remains unclear. Even for measurement
studies, it is not uncommon to use tens of home IoT
devices to draw conclusions [25]. Our use of a large-
scale dataset of network traffic provides a new angle to
understand to what extent observations can be generalized.

In addition to our novel combination of analyzing a
crowdsourced dataset and in-lab measurements, the IoT
Inspector dataset’s realism is notable. It was collected
from 5,439 volunteers around the world [17], reflecting
devices deployed under real conditions. Much existing
work, such as from DeMarinis et al. [7], assumes that IoT
devices have predictable patterns in network traffic. Prior
work, including from Dong et al. [8] and Mandalari et
al. [21], is based on static snapshots of IoT device behav-
iors in the lab, missing changes from firmware updates.

Generating IoT network policies: Our work is largely
motivated by the MUD [20] proposal, which in essence
is a framework for deploying allowlists on home IoT
devices. Network policies are often created, maintained,
and shared by communities, but to enable crowd-sourcing
IoT network policies, it is crucial that the observations
made from one set of devices can be transferred to other
devices for the same home IoT products. Identifying
and quantifying the variations is merely a step in the
exploration, which is different from all the prior work
that set out for IoT network policy generation. There are
two types of network policies: blocklists and allowlists.
Blocklists have received more attention and are more
widely used. In a different domain, many ad blockers use
a blocklist strategy, gathering policies through community
effort [24]. Prior research on IoT network blocklists in-
stead creates broadly applicable blocklists by blocking ob-
served hostnames one at a time on a real IoT device [21].
Blocklists do not have to be complete to maintain device
functionality, so they can be deployed immediately.

Creating crowd-sourcing allowlists is a different story.
Although several studies proposed creating allowlists
based on observing a single device [4], [11], [14], [15],
our analysis shows that due to load balancing, geolocation,
and other network-specific settings, these allowlists will
not generalize. Applications like allowlists are thus not
suitable for in-lab studies. To enable such applications,
it is crucial to acknowledge the variations of home IoT
products’ network behaviors first, and then think of ways
to be adaptive. Unlike prior work, our study took a deep
dive to understand the variations and quantify the trans-
ferability, showcasing what products’ network behaviors
are more consistent than others, in what aspect, and how
to achieve a more stable dataset.

In-the-Wild Home IoT Network Measurements: Other
than the IoT Inspector dataset, a few other network mea-
surement studies focus on in-the-wild home IoT devices.

Saidi et al. studied both IoT devices’ backend infrastruc-
ture and IoT device detection through a major European
ISP data [26], [27]. Their study focuses more on the cloud
service providers instead of individual home IoT products,
due to the nature of the dataset. In contrast, our study
uncovers home IoT products’ usage of cloud services
on a large scale through the lens of individual devices,
exploring how these services impact device functionality.

8. Discussion and Conclusions

Previous studies of the network behaviors of home
Internet of Things (IoT) devices have typically been
conducted in controlled lab settings, leaving open ques-
tions about how well these measurements generalize. We
conducted the most thorough and comprehensive mea-
surement to date of how home IoT products’ network
behaviors vary across different devices (physical instances
of a given product), as well as the degree to which the
devices would continue to function if these measurements
were used to enforce MUD-like allowlists.

While one might have expected to find variations in the
traffic, the variations we observed were significant enough
to cause some products to stop working when trying to
build an allowlist. More precisely, for the majority of the
24 products we tested, at least one type of functionality
ceased to function when enforcing MUD-style allowlists
that represented hosts with their full hostname (FQDN) or
a pattern-based abstraction of the full hostname.

Allowlists That Work in Practice: Nonetheless, without
manufacturers creating MUDs at scale, crowdsourcing
MUDs is a possible way to improve IoT security. Even
using arguably outdated (three-year-old) data, we showed
functional MUD-like allowlists could be created success-
fully for some devices. Specifically, even using crowd-
sourced data from other people’s devices collected a few
years prior to generate allowlists, only 2 of the 24 products
we tested completely ceased to function using the domain
to represent endpoints. For both of those products—a
Honeywell thermostat and an iHome switch—the vendor
had changed a primary web domain with which those
devices communicate. For the five additional products that
had some functionality stop working even though most
continued to work, we observed a variety of underlying
reasons. Sonos One introduced a new streaming radio
feature that launched after the IoT Inspector dataset had
been collected [32]. Both the Lutron Bridge and Amazon
Fire stick failed when performing a factory reset, a rare
behavior that likely had not been captured in the IoT In-
spector dataset and that used different API endpoints than
the products’ other operations. The Nintendo Switch failed
when trying to watch YouTube, a third-party integration
that had not been exercised in the original dataset. The
Amazon Ring live view and 2-way audio features failed
because our system did not observe the DNS query nec-
essary to map the IP addresses observed on the network
to a domain in the allowlist, possibly due to caching.

As such, we found evidence that one can construct
a domain-based allowlist for many home IoT products
based on a crowdsourced dataset like IoT Inspector,
and that most products will continue to work normally.
Had we also collected more recent data from our own



device, or likely just more recent from crowdsourced de-
vices, the new API endpoints and new features that caused
many of the failures above would not have been an issue.
We can imagine an ecosystem in which new measurements
are regularly taken by some crowd contributor for home
IoT products to ensure the comprehensiveness of these
types of allowlists, though it will be important to enforce
the types of thresholds we investigated to prevent a small
number of malicious actors from poisoning the allowlist.

A few types of home IoT products seem unlikely to
work fully with an allowlist under any circumstances,
however. Specifically, devices that rely on streaming me-
dia from potentially arbitrary media sources. Examples
include certain features of the Sonos Radio, smart TVs
(not investigated in our study), or using video game con-
soles for visiting arbitrary media platforms or websites.
For home IoT products with more constrained purposes
however, domain-based allowlists seem promising.

Security Implications: Prior work has demonstrated it
is possible to create MUD files by measuring the traffic
of one device in the lab [14], [15]. We, on the other hand,
argue that these unofficial MUD files may only work on
that same, single device for a limited period of time. This
puts pressure on end users to maintain the MUD file,
which can be very tedious. For hostnames that change
due to load balancing and CDNs, we also show that they
can sometimes be addressed by extracting patterns from
these hostnames, or even better by instead simply using
domain-based representations. However, this approach can
have implications for security.

We observed a number of CDNs included as end-
points in the IoT Inspector data. Many CDNs are pro-
vided by public cloud service provider, which means
anyone can register their own hostname under the same
domain. Allowing a domain that is used for public cloud
services is obviously problematic for security because
it enables an attacker to create a new endpoint that is
already contained in the allowlist. Using patterns may
be another solution. Unfortunately, if the cloud service
provider or the vendor uses random strings for their
hostnames (e.g., CloudFront), then the end-user has to
allow everything from that domain because the hostname
is unpredictable. Even if the cloud service provider or
the vendor has a particular naming convention for their
services, cloud service providers may not provide a way
to block off the whole naming space for the vendor,
giving attackers an opportunity to exploit it. For example,
arlostatic-z1.s3.amazonaws.com is one host-
name used by Netgear’s Arlo cameras. We observed re-
lated hostnames in the dataset with different final digits in
the lowest-level subdomain. However, even with a large-
scale dataset like the IoT Inspector dataset, we cannot
be certain what is the range of these final digits. Thus,
one may use arlostatic-z[0-9]+\.s3\.amazonaws\.com as
the pattern. An attacker can exploit the fact there is no
limitation placed on the numbers and try to register a host-
name like arlostatic-z111.s3.amazonaws.com to match.
We confirmed this to be feasible on Amazon AWS S3.

To reduce the attack service while still leveraging the
benefits of cloud computing, home IoT vendors could
use their own (vendor-controlled) second-level domains to
point at relevant parts of cloud hosting services and CDNs,

rather than doing so at the sub-sub-domain level as we
observed. Using vendor-controlled second-level domains
would prevent common domains like amazonaws.com
from needing to appear in the allowlists. Alternatively,
vendors would need to release their own comprehensive
MUD files, which we earlier mentioned has not occurred
despite the MUD format being standardized.

The threshold for deciding whether to include a par-
ticular endpoint in the allowlist also has important se-
curity implications. To provide robustness against a small
number of previously compromised devices in the dataset,
setting a threshold higher than the number of previously
compromised devices can minimize the chance that ille-
gitimate endpoints appear in the final allowlist. The same
consideration applies to intentionally malicious devices
that a bad actor submits to a crowdsourced dataset. Future
work could consider more rigorously attempting to remove
potentially compromised devices, which we did manually
(Section 5.1) for a small number of IoT Inspector devices
that seemed to be either mislabeled or possibly compro-
mised based on how different their traffic looked from
other devices of the same product.

Regional variability in the endpoints a product contacts
can also have implications for security. If the endpoints
a given product contacts differ substantially by region,
the crowdsourced dataset must contain at least a threshold
number of devices from each region, and likely more than
that because not every device will necessary contact every
endpoint. For regions in which few users have submitted
data from a particular product, or even own a particular
product, a lower threshold might be needed to ensure
functionality, yet this negatively impacts security.

Lifespan of Network Measurement Studies: As dis-
cussed in Section 5.9, most products’ network behaviors
may need to be updated yearly or bi-yearly. Our lab
experiments (Section 6) further showcased that a three-
year-old dataset does not fully reflect all current behaviors
of home IoT devices even though they captured many.
Based on our use of a three-year-old dataset, we estimate
that home IoT measurements’ “shelf life” may be on the
order of a few years. If one uses network measurements
for creating MUD files or for anomaly detection, it may
be expedient to collect new data after a year or two. That
said, our measurement can only provide a lower bound on
lifespans. There could be endpoints that are still active, but
were not captured by IoT Inspector.

Data Availability

Our code for conducting the analyses reported in
this paper is available [31]. Unfortunately, IoT Inspector
data cannot be shared without explicit permission from
the original authors’ IRB and required training [17]. We
instead provide correctly formatted synthetic sample data.
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Appendix A.
Product Popularity and Approximate Prices

Device Name # Amazon Reviews Price

Amazon Echo Dot 101.6K $49.99
Amazon Fire Stick 468.1K $39.99
Amazon Ring 15.3K $59.99
Belkin Wemo Plug 19K $38.68
Chamberlain Garage 305 $199.00
DLink Camera 84 $69.99
Ecobee Thermostat 11.8K $149.99
Google Chromecast 20.5K $49.99
Google Home 411 $49.99
Google Nest Thermostat 13.8K $111.90
Honeywell Thermostat 2.5K $159.99
iDevice Switch 1.2K $67.60
iHome Switch 234 —
Lifx Light 2.3K $39.98
Logitech Harmony 3.4K $219.00
Lutron Bridge 4.9K $99.95
Nintendo Switch 35.7K $349.99
Philips Hue 35.2K $39.95
Roku Streamer 76.9K $29.00
Sonos One 7.7K $230.85
Sony Console 1.6K $227.00
TP-Link Plug 29K $13.99
Wyze Camera 84.8K $32.50
Xiaomi Vacuum 412 —

TABLE 2: A reference for the market popularity (measured using the number of reviews as a proxy) and current prices
of the products in our testbed according to Amazon.com. Please note that the figures in this table were recorded in
May 2024, which may represent newer versions of products compared to the ones we purchased in 2020 and 2021.
Most products now have a newer model available, and some have even been discontinued. “—” denotes products that
no longer have a price on Amazon.com.



Appendix B.
Functionalities Tested

TABLE 3: Product functionalities tested in our lab.
Functionality Description

Amazon Echo Dot
Productivity "Alexa, what’s the time?"
Entertainment "Alexa, play music."
Device control "Alexa, turn on/off all Hue lights."
Communication "Alexa, Call Alice."
Shopping "Alexa, search for dog toys."
Skills "Alexa, play thunderstorm sounds."
Change volume Change the volume of the Echo Dot.
Factory Reset Reset and initialize the device.

Amazon Fire Stick
Built-in Alexa "Alexa, find action movies"
Streaming Streaming a movie that is free (with ads).
Download apps Download Spotify in the App Market on Amazon Fire.
Factory Reset Reset and initialize the device.

Amazon Ring
Live view Watch live video feed.
Notification Receive notification.
Two-way audio Two-way audio communication.
Motion detection Motion detection.

Belkin Wemo Plug
On Turn on the plug.
Off Turn off the plug.
Scheduling Schedule the plug to turn on/off at a specific time.
Auto-off Set up a one-minute countdown to turn off the plug.
Away mode Activate the away mode.
Factory Reset Reset and initialize the device.

Chamberlain Garage
Control Garage Door Open/close garage door.
Schedule Schedule an event.
Alerts Alerts of door opening or closing.

DLink Camera
Live view Watch live video feed.
Move camera Move the view of camera.
Two-way audio Two-way audio communication.
Motion detection Motion detection.
Recording Recording the video feed.
Schedule Schedule an event.
Change scene Change to a preset scene.
Automation Execute an automation.
Factory reset Reset and initialize the device.

Ecobee Thermostat
Change temperature Change target temperature.
Select modes Change thermostat’s mode.
Schedule Schedule an event.
Comfort setting Change one’s comfort setting.
Vacation Change the thermostat to vacation mode.
Reminder Set up a reminder.
Fan setting Change the fan’s setting.
Follow me Turn on/off the “Follow me” feature.
Built-in Alexa Use the built-in Alexa to control the device.
Factory reset Reset and initialize the device.

Google Chromecast
Watch Live TV "Hey Google, play Youtube on the Hallway TV"
Cast tab to TV
Cast screen to TV
Cast media to TV
Factory Reset Reset and initialize the device.

Google Home
Media "Google, play some music."
Control Chromecast "Hey Google, play Youtube on the Hallway TV"
Find your phone "Hey Google, find my phone"
Manage tasks "Hey Google, set a timer for 1 min."
Control your home "Hey Google, turn on the wemo plug."
Plan "Hey Google, how’s the weather?"
Change volume
Factory Reset Reset and initialize the device.

Google Nest Thermostat
Change temperature Change target temperature.
Change mode Change thermostat’s mode.
Change preset Change the preset.
Hold temperature Hold temperature.
Turn on/off the fan Turn on/off the fan.
Change schedule Change the schedule.

Honeywell Thermostat
Adjust temperature Change target temperature.
Schedule Schedule an event.
Vacation Change the thermostat to vacation mode.
Mode Change thermostat’s mode.
Adaptive recovery Turn on/off the “Adaptive recovery” feature.
Voice control Control the thermostat using Alexa.

iDevice Switch
Turn on/off Turn on/off the switch.
Turn on/off the night light Turn on/off the night light on the switch.
Change the night light’s color Change the night light’s color.
Schedule Schedule an event.
Factory Reset Reset and initialize the device.

iHome Switch
On/off Turn on/off the switch.
Schedule Schedule an event.
Scene Change a scene.
Voice control Control the switch (on/off) using Alexa.

TABLE 4: (Continuation) Functionalities tested.
Functionality Description

Lifx Light
Schedule Schedule an event.
Voice control Control the light (on/off) using Alexa.
Change color Change the light’s color.
Change scene Change to a preset scene.
Change effects Change to a preset effects.

Logitech Harmony
Select activity Perform an action on a device
Turn on/off device Turn device on/off.
Help Open help page.
Set up device Connect to a new device.

Lutron Bridge
Turn on/off Turn on/off the switch.
Add/Change scene Add and change the scene.
Add schedule Add a scheduled event.
Factory Reset Reset and initialize the device.

Nintendo Switch
eShop (first time) Open eShop for the first time (need password)
eShop (not first time) Open eShop not for the first time (do not need password)
News Open News.
Switch Online Open Switch Online.
Link account Link Nintendo account when it is used for the first time
Download app Download app.
Friends Add friends.
Use an app Open the YouTube app.
Purchase an app Purchase a free game/app.
Factory Reset Reset the device.
Initialization Initialize the device.

Philips Hue
On/Off Turn lights on/off.
Brightness Change the brightness level of a light.
Voice control Control the device (on/off) using Alexa.
Timer Activate a timer that would turn lights on/off in one minute.
Routine Change time to fit for the experiment
Factory Reset Reset and initialize the device.

Roku Streamer
Stream video Stream a video.
Adjust volume Change volume on a remote.
Voice control Using voice command to change volume and make searches.
Remote control (from phone) Using Roku app on a smartphone as a remote controller.
Search Search for a show.

Sonos One
Radio Play Sonos Radio.
Streaming Play songs from Spotify.
Change volume Change volume.
Pause Pause the music.
Play songs from phone Play a song from a phone under the same network.
Voice control (streaming) Using Alexa to play songs.
Voice control (volume) Using Alexa to change volume.
Playlists Edit playlists.
Factory Reset Reset and initialize the device.

Sony Console
Buy games Purchase a game.
Download games Download a game.
Family control Change family settings.
Browse store Open and browse the store page.
Share screenshots Share screenshots.
Connect to spotify Connect to the user’s Spotify account.

TP-Link Plug
On Turn on the plug.
Off Turn off the plug.
Scheduling Schedule the plug to turn on/off at a specific time.
Timer Set up a one-minute countdown to turn off the plug.
Away mode Activate the away mode.
Factory Reset Reset and initialize the device.

Wyze Camera
Live streaming Watch the live stream from the camera.
Event recording Record the live stream.
Motion Tagging Tag motions.
Night vision Switch the camera to night vision.
2-way audio Two-way communication through the camera.
Sharing Share a video clip to other family members.
Rules
On Turn on the camera.
Off Turn off the camera.
Factory Reset Reset and initialize the device.

Xiaomi Vacuum
Clean Begin cleaning.
Level control Change clean level.
Schedule Schedule an event.
Automation Execute an automation.
Remote control Control the vacuum’s direction through phone.
Find the vacuum Make the vacuum beep.
Factory reset Reset and initialize the device.



Appendix C.
Tables Indicating Failures Due to Network Policy Enforcement

TABLE 5: The highest tested thresholds (i.e., the strictest allowlist) and the number of allowed hostnames/patterns/-
domains that keep devices functioning in our in-lab experiment. × [Failure Reason] means none of our generated
allowlists maintained functionality; the “failure reason” explains why. To force the tested devices to use the Internet
instead of the local network, the companion app is used on a smartphone connected to a different network by default,
unless the functionality under test requires the smartphone to be on the same network (e.g., Google Chromecast).

Device Functionality Hostname Hostname Pattern Domain
# of Allowed

Hostnames Threshold
# of Allowed

Patterns Threshold
# of Allowed

Domains Threshold

Amazon Echo Dot
(N=576)

Productivity × Load balancing 22 115 2 518
Entertainment × Load balancing × CDNs 4 460
Device control × Load balancing 22 115 2 518
Communication × Load balancing × CDNs 11 57
Shopping × Load balancing 22 115 2 518
Skills × Load balancing 1982 1 91 4
Factory reset × Load balancing 22 115 4 460

Amazon Fire Stick
(N=136)

Built-in Alexa 77 13 74 13 6 54
Streaming 10486 1 5481 1 17 27
Download apps 210 5 187 5 33 13
Factory reset × API change × API change × API change

Amazon Ring
(N=60)

Live view × Missing DNS × Missing DNS × Missing DNS
Notification × Missing DNS × Missing DNS 2 48
2-way audio × Missing DNS × Missing DNS × Missing DNS
Motion detection × Missing DNS × Missing DNS 2 48

Belkin Wemo
(N=220)

On/Off × API change × API changes 13 5
Scheduling × API changes × API changes 13 5
Auto-off × API changes × API changes 13 5
Away mode × API changes × API changes 13 5
Factory Reset 2 110 2 110 1 198

Chamberlain Garage
(N=68)

Control Garage Door × API change × API change 1 56
Scheduling × API change × API change 1 56
Alerts × API change × API change 1 56

DLink Camera
(N=40)

Live view × API Change × API Change 1 36
Move camera × Interaction dependency × Interaction dependency 1 36
Motion/People detection × API Change × API Change 1 36
Two-way audio × Interaction dependency × Interaction dependency 1 36
Recording × Interaction dependency × Interaction dependency 1 36
Schedule × API Change × API Change 1 36
Change scene × API Change × API Change 1 36
Automation × API Change × API Change 1 36
Initial setup × API Change × API Change 1 36

Ecobee Thermostat
(N=116)

Change Temperature 5 11 5 11 1 104
Select modes 5 11 5 11 1 104
Schedule 5 11 5 11 1 104
Comfort setting 5 11 5 11 1 104
Vacation 5 11 5 11 1 104
Reminder 5 11 5 11 1 104
Fan setting 5 11 5 11 1 104
Follow me 5 11 5 11 1 104
Built-in Alexa 5 11 5 11 3 11
Factory Reset 3 26 3 26 1 104

Google Chromecast
(N=288)

Watch Live TV × CDNs 230 2 47 5
Factory reset 13 115 5 201 2 201

Google Home
(N=490)

Media × CDNs 151 3 2 392
Control Chromecast 8 245 7 245 2 392
Find your phone 8 245 7 245 2 392
Manage tasks 8 245 7 245 2 392
Control your home 8 245 7 245 2 392
Plan 8 245 7 245 2 392
Factory reset 26 49 25 49 2 392

Google Nest
(N=163)

Change Temperature × API change × API changes 20 4
Change mode × API changes × API changes 20 4
Change preset × API changes × API changes 20 4
Hold temperature × API changes × API changes 20 4
Fan on/off × API changes × API changes 20 4
Change schedule × API changes × API changes 20 4

Honeywell Thermostat
(N=28)

Change temperature × API change × API change × API change
Schedule × API change × API change × API change
Vacation × API change × API change × API change
Mode × API change × API change × API change
Adaptive recovery × API change × API change × API change
Voice control × API change × API change × API change

iDevice Switch
(N=40)

On/off × Missing DNS × Missing DNS 1 28
Night light on/off × Missing DNS × Missing DNS 1 28
Night light color × Missing DNS × Missing DNS 1 28
Scheduling × Missing DNS × Missing DNS 1 28
Factory reset × Missing DNS × Missing DNS 1 28



TABLE 6: This table is a continuation of Table 5.

Device Functionality Hostname Hostname Pattern Domain
# of Allowed

Hostnames Threshold
# of Allowed

Patterns Threshold
# of Allowed

Domains Threshold

iHome Switch
(N=31)

On/off × API change × API change × API change
Schedule × API change × API change × API change
Scene × API change × API change × API change
Voice control × API change × API change × API change

Lifx Lights
(N=50)

Scheduling 1 45 1 45 1 45
Voice control 1 45 1 45 1 45
Change color 1 45 1 45 1 45
Scene 1 45 1 45 1 45
Effects 1 45 1 45 1 45

Logitech Harmony
(N=112)

Select activity 1 100 1 100 1 100
Device on/off 1 100 1 100 1 100
Help 1 100 1 100 1 100
Set device 1 100 1 100 1 100

Lutron Bridge
(N=31)

On/Off × API change × API changes 4 15
Scheduling × Interaction dependency × Interaction dependency 4 15
Scene × Interaction dependency × Interaction dependency 4 15
Factory Reset × API change × API change × Rare operation

Nintendo Switch
(N=62)

eShop (first time) × Rare Operation × Rare Operation × Rare Operation
eShop (not first time) 54 2 54 2 2 31
News 9 18 9 18 1 55
Switch Online × API Change × API Change 2 31
Link account × Rare Operation × Rare Operation 62 3
Download app/game 31 4 31 4 2 31
Friends 22 6 9 18 2 31
Factory reset 22 6 22 6 2 31
Initial setup 13 12 9 18 1 55

Philips Hue
(N=295)

On/Off 1 236 1 236 1 236
Brightness 1 236 1 236 1 236
Voice control 1 236 1 236 1 236
Timer 1 236 1 236 1 236
Routine 1 236 1 236 1 236
Factory reset 6 59 6 59 3 59

Roku Streamer
(N=52)

Stream × CDNs × CDNs 32 5
Search 124 3 124 3 2 46
Voice Control 826 1 826 1 16 10
Remote Control 3 41 3 41 2 46
Adjust volume × API change × API change × Rare operation

Sonos One
(N=261)

Radio × New services × New services × New services
Streaming × CDNs 119 3 4 52
Change volume × Interaction dependencies 119 3 4 52
Pause × Interaction dependencies 119 3 4 52
Voice control (streaming) × Load balancing × Load balancing 62 3
Voice control (volume) × Load balancing 521 1 62 3
Factory Reset 411 2 223 2 3 78

Sony Console
(N=62)

Buy Games 814 1 814 1 12 5
Download Games 1 55 1 55 1 55
Family Control 814 1 814 1 12 5
Share Screenshots 1 55 1 55 1 55
Connect to Spotify 814 1 814 1 47 2

TP-Link Switch
(N=88)

On/Off 3 26 3 26 1 70
Scheduling 3 26 3 26 1 70
Timer 3 26 3 26 1 70
Away mode 3 26 3 26 1 70
Factory Reset 3 26 3 26 1 70

Wyze Camera*
(N=167)

Live streaming 77 2 68 2 4 100
Event recording 77 2 68 2 4 100
Motion Tagging 77 2 68 2 4 100
Night vision 77 2 68 2 4 100
2-way audio 77 2 68 2 4 100
Sharing 77 2 68 2 4 100
Rules 77 2 68 2 4 100
On/Off 77 2 68 2 4 100
Factory Reset 18 16 17 16 4 100

Xiaomi Vacuum
(N=30)

Clean × API Change × API Change 1 27
Level Control × API Change × API Change 1 27
Schedule × API Change × API Change 1 27
Automation × API Change × API Change 1 27
Remote control × API Change × API Change 1 27
Find the vacuum × API Change × API Change 1 27
Initial setup × API Change × API Change 1 27

* The Wyze Camera only worked with additional manually allowed IP addresses. The IP addresses were the main contributors to the Wyze
Camera’s traffic and can be easily observed; no associated DNS lookup was observed.



Appendix D.
Regionalization Regressions

TABLE 7: Linear regressions modeling the impact on transferability of the geographic region in which devices were
located, whether the source and target regions were the same (* represents an interaction term), the amount of sample
data, and the product. As the baseline for categorical variables, we use the largest category: A for region and Amazon
Echo for product.

(a) Hostname-based allowlists
Factor β SE t p

(Intercept) 0.828 0.004 194.915 <.001
Source Region: B -0.025 0.001 -19.322 <.001
Source Region: C -0.036 0.001 -26.541 <.001
Target Region: B -0.041 0.002 -22.423 <.001
Target Region: C -0.091 0.004 -24.806 <.001
Product: Belkin Switch -0.363 0.002 -170.291 <.001
Product: Google Chromecast 0.086 0.002 51.714 <.001
Product: Google Home 0.089 0.001 65.493 <.001
Product: Philips Hue 0.074 0.002 43.744 <.001
Product: Sonos Speaker -0.321 0.002 -194.669 <.001
log(Train Sample Size) 0.008 <.001 18.014 <.001
Source Region: B * Target Region: B 0.060 0.003 23.276 <.001
Source Region: B * Target Region: C 0.063 0.005 12.131 <.001
Source Region: C * Target Region: B 0.054 0.003 21.339 <.001
Source Region: C * Target Region: C 0.128 0.007 19.644 <.001

(b) Hostname-pattern-based allowlists
Factor β SE t p

(Intercept) 0.792 0.004 213.467 <.001
Source Region: B -0.031 0.001 -25.069 <.001
Source Region: C -0.032 0.001 -25.500 <.001
Target Region: B -0.036 0.002 -21.423 <.001
Target Region: C -0.100 0.003 -29.007 <.001
Product: Belkin Switch -0.044 0.002 -22.248 <.001
Product: Google Chromecast 0.063 0.002 40.579 <.001
Product: Google Home 0.066 0.001 51.954 <.001
Product: Philips Hue 0.048 0.002 30.074 <.001
Product: Sonos Speaker -0.187 0.002 -121.330 <.001
log(Train Sample Size) 0.008 0.000 18.412 <.001
Source Region: B * Target Region: B 0.074 0.002 30.675 <.001
Source Region: B * Target Region: C 0.055 0.005 11.369 <.001
Source Region: C * Target Region: B 0.064 0.002 27.024 <.001
Source Region: C * Target Region: C 0.121 0.006 19.944 <.001

(c) Domain-based allowlists
Factor β SE t p

(Intercept) 0.915 0.004 225.965 <.001
Source Region: C -0.034 0.001 -30.047 <.001
Source Region: B -0.013 0.001 -11.484 <.001
Target Region: C -0.053 0.003 -17.047 <.001
Target Region: B -0.021 0.002 -13.376 <.001
Product: Belkin Switch -0.093 0.002 -54.276 <.001
Product: Google Chromecast -0.002 0.001 -1.303 0.193
Product: Google Home 0.014 0.001 12.889 <.001
Product: Philips Hue 0.044 0.001 31.927 <.001
Product: Sonos Speaker -0.097 0.001 -68.704 <.001
log(Train Sample Size) 0.004 <.001 11.531 <.001
Source Region: C * Target Region: C 0.092 0.006 16.720 <.001
Source Region: B * Target Region: C 0.036 0.004 8.231 <.001
Source Region: C * Target Region: B 0.044 0.002 20.333 <.001
Source Region: B * Target Region: B 0.022 0.002 10.072 <.001

Appendix E.
Additional Figures
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Figure 10: Types of devices whose traffic contains domains that are shared with other vendors. The observations are
made in the lab. Devices whose functionality is impaired after enforcing the network policies are omitted.
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Figure 11: Flow coverage (averaged across 100 runs) for
three ways of characterizing endpoints (domain, hostname, IP
address) for the 24 most popular products. Coverage far below
100% indicates high variability across devices.
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Figure 12: Although the MFOF gener-
ally decreases with increasing thresholds,
many products experience plateaus where
the thresholds increase, but the correspond-
ing MFOF changes little. Lines end when
the allowlist is blank above that threshold.
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Figure 13: Transferability of device network behavior using different host representations (columns). Rows represent the
source product whose traffic we assume is known or observed, and the color indicates the proportion of flows expected
when applying such observations to devices of the same product, with a threshold of between 1 and 5s (sub-columns).
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Figure 14: Transferability of device network behavior using different host representations (columns). Rows represent the
source product whose traffic we assume is known or observed, and the color indicates the proportion of flows expected
when applying such observations to devices of the same vendor, with a threshold of between 1 and 5s (sub-columns).
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Figure 15: Transferability of device network behavior using different host representations (columns). Rows represent the
source product whose traffic we assume is known or observed, and the color indicates the proportion of flows expected
when applying such observations to devices of the same type, with a threshold of between 1 and 5s (sub-columns).
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